The Analytical Basics

The basic rules of probability:
$\operatorname{Pr}(\mathrm{A})+\operatorname{Pr}($ not -A$)=1 ; \operatorname{Pr}(\mathrm{A}$ and B$)+\operatorname{Pr}(\mathrm{A}$ and not- B$)=\operatorname{Pr}(\mathrm{A})$
$\operatorname{Pr}(\mathrm{A}$ or B$)=1-\operatorname{Pr}($ not- A and not- B$)$
$\operatorname{Pr}(\mathrm{A}$ or B$)=\operatorname{Pr}(\mathrm{A})+\operatorname{Pr}(\mathrm{B})-\operatorname{Pr}(\mathrm{A}$ and B$)$
The basic rules of conditional probability:
Definition: $\operatorname{Pr}(\mathrm{A} \mid \mathrm{B})=\operatorname{Pr}(\mathrm{A}$ and B$) / \operatorname{Pr}(\mathrm{B})$
$\operatorname{Pr}(\mathrm{A}$ and B$)=\operatorname{Pr}(\mathrm{A}) \cdot \operatorname{Pr}(\mathrm{B} \mid \mathrm{A})$; when A and B are independent, $\operatorname{Pr}(\mathrm{A}$ and B$)=\operatorname{Pr}(\mathrm{A}) \cdot \operatorname{Pr}(\mathrm{B})$
$\operatorname{Pr}(\mathrm{A}$ and B and C$)=\operatorname{Pr}(\mathrm{A}) \cdot \operatorname{Pr}(\mathrm{B} \mid \mathrm{A}) \cdot \operatorname{Pr}(\mathrm{C} \mid \mathrm{A}$ and B$)$, and so on
$\operatorname{Pr}(\mathrm{A})=\operatorname{Pr}\left(\mathrm{A} \mid \mathrm{B}_{1}\right) \cdot \operatorname{Pr}\left(\mathrm{B}_{1}\right)+\ldots+\operatorname{Pr}\left(\mathrm{A} \mid \mathrm{B}_{\mathrm{k}}\right) \cdot \operatorname{Pr}\left(\mathrm{B}_{\mathrm{k}}\right)$, when $\mathrm{B}_{1}, \ldots, \mathrm{~B}_{\mathrm{k}}$ are disjoint and exhaustive

Bayes’ Rule, and how it works using probability trees
The basic rules of expectation:
$\mathrm{E}[\mathrm{aX}+\mathrm{b}]=\mathrm{a} \cdot \mathrm{E}[\mathrm{X}]+\mathrm{b}$
$\mathrm{E}[\mathrm{X}+\mathrm{Y}]=\mathrm{E}[\mathrm{X}]+\mathrm{E}[\mathrm{Y}]$
$\mathrm{E}[\mathrm{X}]=\mathrm{E}\left[\mathrm{X} \mid \mathrm{B}_{1}\right] \cdot \operatorname{Pr}\left(\mathrm{B}_{1}\right)+\ldots+\mathrm{E}\left[\mathrm{X} \mid \mathrm{B}_{\mathrm{k}}\right] \cdot \operatorname{Pr}\left(\mathrm{B}_{k}\right)$, when $\mathrm{B}_{1}, \ldots, \mathrm{~B}_{k}$ are disjoint and exhaustive $\mathrm{E}[\mathrm{XY}]=\mathrm{E}[\mathrm{X}] \cdot \mathrm{E}[\mathrm{Y}]$, if X and Y are independent

The basic rules of variability:
Definitions: $\operatorname{Var}(\mathrm{X})=\mathrm{E}\left[\mathrm{X}^{2}\right]-(\mathrm{E}[\mathrm{X}])^{2}=\mathrm{E}\left[(\mathrm{X}-\mathrm{E}[\mathrm{X}])^{2}\right] ; \operatorname{StDev}(\mathrm{X})=\sqrt{ } \operatorname{Var}(\mathrm{X})$
$\operatorname{Var}(\mathrm{aX}+\mathrm{b})=\mathrm{a}^{2} \operatorname{Var}(\mathrm{X}) ; \operatorname{StDev}(\mathrm{aX}+\mathrm{b})=|\mathrm{a}| \operatorname{StDev}(\mathrm{X})$
$\operatorname{Var}(\mathrm{X}+\mathrm{Y})=\operatorname{Var}(\mathrm{X})+\operatorname{Var}(\mathrm{Y})+2 \operatorname{Cov}(\mathrm{X}, \mathrm{Y})$
$\operatorname{Var}(\mathrm{X}+\mathrm{Y}+\mathrm{Z})=\operatorname{Var}(\mathrm{X})+\operatorname{Var}(\mathrm{Y})+\operatorname{Var}(\mathrm{Z})+2 \operatorname{Cov}(\mathrm{X}, \mathrm{Y})+2 \operatorname{Cov}(\mathrm{X}, \mathrm{Z})+2 \operatorname{Cov}(\mathrm{Y}, \mathrm{Z})$, and so on.

Definition: $\operatorname{Cov}(\mathrm{X}, \mathrm{Y})=\mathrm{E}[\mathrm{XY}]-\mathrm{E}[\mathrm{X}] \cdot \mathrm{E}[\mathrm{Y}]=\mathrm{E}[(\mathrm{X}-\mathrm{E}[\mathrm{X}]) \cdot(\mathrm{Y}-\mathrm{E}[\mathrm{Y}])]$
$\operatorname{Cov}(\mathrm{aX}+\mathrm{b}, \mathrm{cY}+\mathrm{d})=\mathrm{ac} \cdot \operatorname{Cov}(\mathrm{X}, \mathrm{Y})$
Definition: $\operatorname{Corr}(\mathrm{X}, \mathrm{Y})=\operatorname{Cov}(\mathrm{X}, \mathrm{Y}) /(\operatorname{StDev}(\mathrm{X}) \cdot \operatorname{StDev}(\mathrm{Y}))$
If X, X_{1}, \ldots, X_{n} are independent and identically distributed:
$\mathrm{E}\left[\mathrm{X}_{1}+\ldots+\mathrm{X}_{\mathrm{n}}\right]=\mathrm{n} \cdot \mathrm{E}[\mathrm{X}]$
$\operatorname{Var}\left(\mathrm{X}_{1}+\ldots+\mathrm{X}_{\mathrm{n}}\right)=\mathrm{n} \cdot \operatorname{Var}(\mathrm{X}) ; \operatorname{StDev}\left(\mathrm{X}_{1}+\ldots+\mathrm{X}_{\mathrm{n}}\right)=\sqrt{ } \mathrm{n} \cdot \operatorname{StDev}(\mathrm{X})$,
$\operatorname{Var}\left(\left(\mathrm{X}_{1}+\ldots+\mathrm{X}_{\mathrm{n}}\right) / \mathrm{n}\right)=\operatorname{Var}(\mathrm{X}) / \mathrm{n} ; \operatorname{StDev}\left(\left(\mathrm{X}_{1}+\ldots+\mathrm{X}_{\mathrm{n}}\right) / \mathrm{n}\right)=\operatorname{StDev}(\mathrm{X}) / \sqrt{ } \mathrm{n}$

